If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-60x-104000=0
a = 3; b = -60; c = -104000;
Δ = b2-4ac
Δ = -602-4·3·(-104000)
Δ = 1251600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1251600}=\sqrt{400*3129}=\sqrt{400}*\sqrt{3129}=20\sqrt{3129}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-20\sqrt{3129}}{2*3}=\frac{60-20\sqrt{3129}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+20\sqrt{3129}}{2*3}=\frac{60+20\sqrt{3129}}{6} $
| (X+2)3=(x-4)6 | | 70+y=69 | | 7(2b+7)=119 | | 1.28*x-2800=x | | 1.5*x-5000=x | | 21+y=33 | | (x-2)5=(x-7)3 | | x^2+14x-127.4=0 | | √x=2√5 | | 13y+42=26y-10 | | 8x–3x–12=13 | | 55x-4=46x+8 | | 4 | | x^2+14x-77=0 | | 3(h-2)=5(4+h) | | 4x+2x+x=100 | | x=2-(19-x) | | 25x-36=18x+13 | | 2(f-1)=f+12 | | 3x÷2=3 | | 4=36º¢™¶m | | 3/4x-9=~17+x/4 | | 8x+4x-9=10x+7 | | 2x-5x=x-9 | | 3/4x=-17+x/4 | | 3(x-6)^2+15=27 | | -5=2(3x+1)-1 | | 5x+18=2(2x+5)-2 | | W=4u+3 | | 5x+3-x=3x12 | | 2/5(x-2)+3/7=1/7(x+1) | | 2,5x+6=1,5x+8 |